Search results for "solution processes"

showing 2 items of 2 documents

Polymeric Thin Films for Organic Electronics: Properties and Adaptive Structures

2013

This review deals with the correlation between morphology, structure and performance of organic electronic devices including thin film transistors and solar cells. In particular, we report on solution processed devices going into the role of the 3D supramolecular organization in determining their electronic properties. A selection of case studies from recent literature are reviewed, relying on solution methods for organic thin-film deposition which allow fine control of the supramolecular aggregation of polymers confined at surfaces in nanoscopic layers. A special focus is given to issues exploiting morphological structures stemming from the intrinsic polymeric dynamic adaptation under non-…

Materials scienceSupramolecular chemistryNanotechnologyReviewlcsh:Technologysolution processeslaw.inventionelectronic devices solution processes polymers thin filmslawmorphologyGeneral Materials ScienceElectronicsThin filmlcsh:MicroscopyNanoscopic scaleplastic electronicslcsh:QC120-168.85chemistry.chemical_classificationOrganic electronicslcsh:QH201-278.5lcsh:TTransistorPolymerchemistrythin filmsThin-film transistorlcsh:TA1-2040solar cellslcsh:Descriptive and experimental mechanicstransistorslcsh:Electrical engineering. Electronics. Nuclear engineeringlcsh:Engineering (General). Civil engineering (General)lcsh:TK1-9971Materials
researchProduct

Supramolecular Order of Solution-Processed Perylenediimide Thin Films

2011

N,N ′ -1 H ,1 H -perfl uorobutyl dicyanoperylenecarboxydiimide (PDIF-CN 2 ), a soluble and air stable n-type molecule, undergoes signifi cant reorganization upon thermal annealing after solution deposition on several substrates with different surface energies. Interestingly, this system exhibits an exceptional edge-on orientation regardless of the substrate chemistry. This preferential orientation is rationalized in terms of strong intermolecular interactions between the PDIF-CN 2 molecules. The presence of a pronounced π– π stacking is confi rmed by combining near-edge X-ray absorption fi ne structure spectroscopy (NEXAFS), dynamic scanning force microscopy (SFM) and surface energy measure…

Materials scienceSupramolecular chemistryAnalytical chemistryStackingSEMICONDUCTORSsolution processesSCALING BEHAVIORBiomaterialsACTIVE LAYERSElectrochemistryCHARGE-TRANSPORTThin filmn-Type semiconductorcharge injectionIntermolecular forcesupramolecular electronicsThin FilmCondensed Matter Physicsorganic transistorsXANESSurface energyElectronic Optical and Magnetic MaterialsChemical physicsMOBILITYGROWTHMORPHOLOGYSupramolecular electronicsAbsorption (chemistry)FIELD-EFFECT TRANSISTORSCONJUGATED POLYMERSGALLIUM-ARSENIDEAdvanced Functional Materials
researchProduct